Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Mol Neurodegener ; 16(1): 25, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853653

RESUMO

BACKGROUND: Apoptosis-inducing factor (AIF), as a mitochondrial flavoprotein, plays a fundamental role in mitochondrial bioenergetics that is critical for cell survival and also mediates caspase-independent cell death once it is released from mitochondria and translocated to the nucleus under ischemic stroke or neurodegenerative diseases. Although alternative splicing regulation of AIF has been implicated, it remains unknown which AIF splicing isoform will be induced under pathological conditions and how it impacts mitochondrial functions and neurodegeneration in adult brain. METHODS: AIF splicing induction in brain was determined by multiple approaches including 5' RACE, Sanger sequencing, splicing-specific PCR assay and bottom-up proteomic analysis. The role of AIF splicing in mitochondria and neurodegeneration was determined by its biochemical properties, cell death analysis, morphological and functional alterations and animal behavior. Three animal models, including loss-of-function harlequin model, gain-of-function AIF3 knockin model and conditional inducible AIF splicing model established using either Cre-loxp recombination or CRISPR/Cas9 techniques, were applied to explore underlying mechanisms of AIF splicing-induced neurodegeneration. RESULTS: We identified a nature splicing AIF isoform lacking exons 2 and 3 named as AIF3. AIF3 was undetectable under physiological conditions but its expression was increased in mouse and human postmortem brain after stroke. AIF3 splicing in mouse brain caused enlarged ventricles and severe neurodegeneration in the forebrain regions. These AIF3 splicing mice died 2-4 months after birth. AIF3 splicing-triggered neurodegeneration involves both mitochondrial dysfunction and AIF3 nuclear translocation. We showed that AIF3 inhibited NADH oxidase activity, ATP production, oxygen consumption, and mitochondrial biogenesis. In addition, expression of AIF3 significantly increased chromatin condensation and nuclear shrinkage leading to neuronal cell death. However, loss-of-AIF alone in harlequin or gain-of-AIF3 alone in AIF3 knockin mice did not cause robust neurodegeneration as that observed in AIF3 splicing mice. CONCLUSIONS: We identified AIF3 as a disease-inducible isoform and established AIF3 splicing mouse model. The molecular mechanism underlying AIF3 splicing-induced neurodegeneration involves mitochondrial dysfunction and AIF3 nuclear translocation resulting from the synergistic effect of loss-of-AIF and gain-of-AIF3. Our study provides a valuable tool to understand the role of AIF3 splicing in brain and a potential therapeutic target to prevent/delay the progress of neurodegenerative diseases.


Assuntos
Processamento Alternativo , Fator de Indução de Apoptose/fisiologia , Mitocôndrias/metabolismo , Degeneração Neural/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Animais , Fator de Indução de Apoptose/deficiência , Fator de Indução de Apoptose/genética , Células Cultivadas , Criança , Modelos Animais de Doenças , Éxons/genética , Feminino , Lobo Frontal/química , Mutação com Ganho de Função , Edição de Genes , Técnicas de Introdução de Genes , Humanos , Lactente , Recém-Nascido , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Pessoa de Meia-Idade , Neurônios/metabolismo , Oxirredução , Consumo de Oxigênio , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia
2.
Cell Res ; 29(7): 579-591, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31133695

RESUMO

Cancer is a major and still increasing cause of death in humans. Most cancer cells have a fundamentally different metabolic profile from that of normal tissue. This shift away from mitochondrial ATP synthesis via oxidative phosphorylation towards a high rate of glycolysis, termed Warburg effect, has long been recognized as a paradigmatic hallmark of cancer, supporting the increased biosynthetic demands of tumor cells. Here we show that deletion of apoptosis-inducing factor (AIF) in a KrasG12D-driven mouse lung cancer model resulted in a marked survival advantage, with delayed tumor onset and decreased malignant progression. Mechanistically, Aif deletion leads to oxidative phosphorylation (OXPHOS) deficiency and a switch in cellular metabolism towards glycolysis in non-transformed pneumocytes and at early stages of tumor development. Paradoxically, although Aif-deficient cells exhibited a metabolic Warburg profile, this bioenergetic change resulted in a growth disadvantage of KrasG12D-driven as well as Kras wild-type lung cancer cells. Cell-autonomous re-expression of both wild-type and mutant AIF (displaying an intact mitochondrial, but abrogated apoptotic function) in Aif-knockout KrasG12D mice restored OXPHOS and reduced animal survival to the same level as AIF wild-type mice. In patients with non-small cell lung cancer, high AIF expression was associated with poor prognosis. These data show that AIF-regulated mitochondrial respiration and OXPHOS drive the progression of lung cancer.


Assuntos
Fator de Indução de Apoptose/fisiologia , Carcinogênese/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Progressão da Doença , Glicólise , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa
3.
Cell Rep ; 25(2): 383-397.e10, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304679

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) and substrate utilization critically regulate the function of hypothalamic proopiomelanocortin (POMC)-expressing neurons. Here, we demonstrate that inactivation of apoptosis-inducing factor (AIF) in POMC neurons mildly impairs mitochondrial respiration and decreases firing of POMC neurons in lean mice. In contrast, under diet-induced obese conditions, POMC-Cre-specific inactivation of AIF prevents obesity-induced silencing of POMC neurons, translating into improved glucose metabolism, improved leptin, and insulin sensitivity, as well as increased energy expenditure in AIFΔPOMC mice. On a cellular level, AIF deficiency improves mitochondrial morphology, facilitates the utilization of fatty acids for mitochondrial respiration, and increases reactive oxygen species (ROS) formation in POMC neurons from obese mice, ultimately leading to restored POMC firing upon HFD feeding. Collectively, partial impairment of mitochondrial function shifts substrate utilization of POMC neurons from glucose to fatty acid metabolism and restores their firing properties, resulting in improved systemic glucose and energy metabolism in obesity.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Homeostase , Mitocôndrias/patologia , Neurônios/metabolismo , Obesidade/prevenção & controle , Fosforilação Oxidativa , Pró-Opiomelanocortina/metabolismo , Animais , Fator de Indução de Apoptose/fisiologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Intolerância à Glucose , Hipotálamo/metabolismo , Hipotálamo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Mitocôndrias/metabolismo , Neurônios/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia
4.
J Biol Chem ; 293(38): 14707-14722, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30093403

RESUMO

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein occasionally involved in cell death that primarily regulates mitochondrial energy metabolism under normal cellular conditions. AIF catalyzes the oxidation of NADH in vitro, yet the significance of this redox activity in cells remains unclear. Here, we show that through its enzymatic activity AIF is a critical factor for oxidative stress-induced activation of the mitogen-activated protein kinases JNK1 (c-Jun N-terminal kinase), p38, and ERK (extracellular signal-regulated kinase). AIF-dependent JNK1 signaling culminates in the cadherin switch, and genetic reversal of this switch leads to apoptosis when AIF is suppressed. Notably, this widespread ability of AIF to promote JNK signaling can be uncoupled from its more limited role in respiratory chain stabilization. Thus, AIF is a transmitter of extra-mitochondrial signaling cues with important implications for human development and disease.


Assuntos
Antígenos CD/metabolismo , Fator de Indução de Apoptose/fisiologia , Caderinas/metabolismo , Transporte de Elétrons , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Apoptose , Catálise , Linhagem Celular , Metabolismo Energético , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oxidantes/metabolismo , Oxirredução , Estresse Oxidativo , Fosforilação , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Mol Metab ; 13: 10-23, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29780003

RESUMO

OBJECTIVE: Mutations in the AIFM1 gene have been identified in recessive X-linked mitochondrial diseases. Functional and molecular consequences of these pathogenic AIFM1 mutations have been poorly studied in vivo. METHODS/RESULTS: Here we provide evidence that the disease-associated apoptosis-inducing factor (AIF) deletion arginine 201 (R200 in rodents) causes pathology in knockin mice. Within a few months, posttranslational loss of the mutant AIF protein induces severe myopathy associated with a lower number of cytochrome c oxidase-positive muscle fibers. At a later stage, Aifm1 (R200 del) knockin mice manifest peripheral neuropathy, but they do not show neurodegenerative processes in the cerebellum, as observed in age-matched hypomorphic Harlequin (Hq) mutant mice. Quantitative proteomic and biochemical data highlight common molecular signatures of mitochondrial diseases, including aberrant folate-driven one-carbon metabolism and sustained Akt/mTOR signaling. CONCLUSION: Our findings indicate metabolic defects and distinct tissue-specific vulnerability due to a disease-causing AIFM1 mutation, with many pathological hallmarks that resemble those seen in patients.


Assuntos
Fator de Indução de Apoptose/genética , Doenças Musculares/genética , Animais , Fator de Indução de Apoptose/fisiologia , Técnicas de Introdução de Genes , Camundongos , Mitocôndrias , Doenças Mitocondriais , Fibras Musculares Esqueléticas/fisiologia , Mutação , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/fisiopatologia , Proteômica
6.
Cancer Res ; 76(12): 3572-82, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197168

RESUMO

Advanced stages of neuroblastoma, the most common extracranial malignant solid tumor of the central nervous system in infants and children, are refractive to therapy. Ectopic expression of melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) promotes broad-spectrum antitumor activity in vitro, in vivo in preclinical animal models, and in a phase I clinical trial in patients with advanced cancers without harming normal cells. mda-7/IL-24 exerts cancer-specific toxicity (apoptosis or toxic autophagy) by promoting endoplasmic reticulum stress and modulating multiple signal transduction pathways regulating cancer cell growth, invasion, metastasis, survival, and angiogenesis. To enhance cancer-selective expression and targeted anticancer activity of mda-7/IL-24, we created a tropism-modified cancer terminator virus (Ad.5/3-CTV), which selectively replicates in cancer cells producing robust expression of mda-7/IL-24 We now show that Ad.5/3-CTV induces profound neuroblastoma antiproliferative activity and apoptosis in a caspase-3/9-independent manner, both in vitro and in vivo in a tumor xenograft model. Ad.5/3-CTV promotes these effects through a unique pathway involving apoptosis-inducing factor (AIF) translocation into the nucleus. Inhibiting AIF rescued neuroblastoma cells from Ad.5/3-CTV-induced cell death, whereas pan-caspase inhibition failed to promote survival. Ad.5/3-CTV infection of neuroblastoma cells increased ATM phosphorylation instigating nuclear translocation and increased γ-H2AX, triggering nuclear translocation and intensified expression of AIF. These results were validated further using two ATM small-molecule inhibitors that attenuated PARP cleavage by inhibiting γ-H2AX, which in turn inhibited AIF changes in Ad.5/3-CTV-infected neuroblastoma cells. Taken together, we elucidate a novel pathway for mda-7/IL-24-induced caspase-independent apoptosis in neuroblastoma cells mediated through modulation of AIF, ATM, and γ-H2AX. Cancer Res; 76(12); 3572-82. ©2016 AACR.


Assuntos
Fator de Indução de Apoptose/fisiologia , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Interleucinas/fisiologia , Neuroblastoma/patologia , Adenoviridae/isolamento & purificação , Animais , Caspases/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Histonas/fisiologia , Humanos , Camundongos , Neuroblastoma/virologia
7.
Cell Death Differ ; 23(2): 333-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26206088

RESUMO

Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase and its dysregulation is implicated in neurodegenerative diseases. Likewise, C-terminus of Hsc70-interacting protein (CHIP) is linked to neurological disorders, serving as an E3 ubiquitin ligase for targeting damaged or toxic proteins for proteasomal degradation. Here, we demonstrate that CHIP is a novel substrate for Cdk5. Cdk5 phosphorylates CHIP at Ser20 via direct binding to a highly charged domain of CHIP. Co-immunoprecipitation and ubiquitination assays reveal that Cdk5-mediated phosphorylation disrupts the interaction between CHIP and truncated apoptosis-inducing factor (tAIF) without affecting CHIP's E3 ligase activity, resulting in the inhibition of CHIP-mediated degradation of tAIF. Lentiviral transduction assay shows that knockdown of Cdk5 or overexpression of CHIP(S20A), but not CHIP(WT), attenuates tAIF-mediated neuronal cell death induced by hydrogen peroxide. Thus, we conclude that Cdk5-mediated phosphorylation of CHIP negatively regulates its neuroprotective function, thereby contributing to neuronal cell death progression following neurotoxic stimuli.


Assuntos
Fator de Indução de Apoptose/fisiologia , Apoptose , Quinase 5 Dependente de Ciclina/fisiologia , Neurônios/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Quinase 5 Dependente de Ciclina/química , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/química , Ubiquitinação
8.
Rev. bras. cir. cardiovasc ; 30(1): 55-62, Jan-Mar/2015. tab
Artigo em Inglês | LILACS | ID: lil-742887

RESUMO

Introduction: Complete denervation of transplanted heart exerts protective effect against postoperative atrial fibrillation; various degrees of autonomic denervation appear also after transection of ascending aorta during surgery for aortic aneurysm. Objective: This study aimed to evaluate if the level of cardiac denervation obtained by resection of ascending aorta could exert any effect on postoperative atrial fibrillation incidence. Methods: We retrospectively analysed the clinical records of 67 patients submitted to graft replacement of ascending aorta (group A) and 132 with aortic valve replacement (group B); all episodes of postoperative atrial fibrillation occurred during the 1-month follow-up have been reported. Heart Rate Variability parameters were obtained from a 24-h Holter recording; clinical, echocardiographic and treatment data were also evaluated. Results: Overall, 45% of patients (group A 43%, group B 46%) presented at least one episode of postoperative atrial fibrillation. Older age (but not gender, abnormal glucose tolerance, ejection fraction, left atrial diameter) was correlated with incidence of postoperative atrial fibrillation. Only among a subgroup of patients with aortic transection and signs of greater autonomic derangement (heart rate variability parameters below the median and mean heart rate over the 75th percentile), possibly indicating more profound autonomic denervation, a lower incidence of postoperative atrial fibrillation was observed (22% vs. 54%). Conclusion: Transection of ascending aorta for repair of an aortic aneurysm did not confer any significant protective effect from postoperative atrial fibrillation in comparison to patients with intact ascending aorta. It could be speculated that a limited and heterogeneous cardiac denervation was produced by the intervention, creating an eletrophysiological substrate for the high incidence of postoperative atrial fibrillation observed. .


Introdução: Denervação completa do coração transplantado exerce efeito protetor contra a fibrilação atrial no pós-operatório; vários graus de denervação autonômica aparecem também após a transecção da aorta ascendente durante a cirurgia de aneurisma da aorta. Objetivo: Este estudo teve como objetivo avaliar se o nível de denervação cardíaca obtida por ressecção da aorta ascendente poderia exercer algum efeito sobre a incidência de fibrilação atrial no pós-operatório. Métodos: Foram analisados retrospectivamente os prontuários de 67 pacientes submetidos a enxerto de substituição de aorta torácica (grupo A) e 132 com a substituição da valva aórtica (grupo B). Foram relatados todos os episódios de fibrilação atrial pós-operatória ocorridos durante 1 mês de seguimento. Parâmetros de variabilidade da frequência cardíaca foram obtidos a partir de 24 h de gravação do Holter; dados clínicos, ecocardiográficos e de tratamento também foram avaliados. Resultados: No geral, 45% dos pacientes (grupo A 43%, grupo B 46%) apresentaram pelo menos um episódio de fibrilação atrial no pós-operatório. Idade mais avançada (mas não gênero, tolerância à glicose anormal, fração de ejeção, diâmetro do átrio esquerdo) foi correlacionada com a incidência de fibrilação atrial pós-operatória. Apenas em um subgrupo de pacientes com transecção aórtica e sinais de maior desarranjo autonômico (parâmetros de variabilidade da frequência cardíaca abaixo da mediana e a média de frequência cardíaca acima do percentil 75), indicando possivelmente denervação autonômica mais profunda, foi observada menor incidência de fibrilação atrial pós-operatória (22% vs. 54%). Conclusão: Transecção da aorta ascendente para correção de um aneurisma da aorta não confere qualquer efeito protetor significativo de fibrilação atrial no pós-operatório em comparação com pacientes com aorta ascendente intacta. Pode-se especular que uma denervação cardíaca limitada e heterogênea foi produzida pela ...


Assuntos
Animais , Camundongos , Encéfalo/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Poli Adenosina Difosfato Ribose/antagonistas & inibidores , Acidente Vascular Cerebral/fisiopatologia , Fator de Indução de Apoptose/fisiologia , Northern Blotting , Cálcio/metabolismo , Morte Celular/fisiologia , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/fisiologia , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/fisiologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos
9.
Biochim Biophys Acta ; 1853(3): 619-31, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25549939

RESUMO

Cystamine and its reduced form cysteamine showed protective effects in various models of neurodegenerative disease, including Huntington's disease and Parkinson's disease. Other lines of evidence demonstrated the cytotoxic effect of cysteamine on duodenal mucosa leading to ulcer development. However, the mechanism for cystamine cytotoxicity remains poorly understood. Here, we report a new pathway in which cystamine induces apoptosis by targeting apoptosis-inducing factor (AIF). By screening of various cell lines, we observed that cystamine and cysteamine induce cell death in a cell type-specific manner. Comparison between cystamine-sensitive and cystamine-resistant cell lines revealed that cystamine cytotoxicity is not associated with unfolded protein response, reactive oxygen species generation and transglutaminase or caspase activity; rather, it is associated with the ability of cystamine to trigger AIF nuclear translocation. In cystamine-sensitive cells, cystamine suppresses the levels of intracellular glutathione by inhibiting γ-glutamylcysteine synthetase expression that triggers AIF translocation. Conversely, glutathione supplementation completely prevents cystamine-induced AIF translocation and apoptosis. In rats, cysteamine administration induces glutathione depletion and AIF translocation leading to apoptosis of duodenal epithelium. These results indicate that AIF translocation through glutathione depletion is the molecular mechanism of cystamine toxicity, and provide important implications for cystamine in the neurodegenerative disease therapeutics as well as in the regulation of AIF-mediated cell death.


Assuntos
Fator de Indução de Apoptose/fisiologia , Apoptose/efeitos dos fármacos , Cistamina/farmacologia , Glutationa/metabolismo , Animais , Apoptose/genética , Úlcera Duodenal/metabolismo , Úlcera Duodenal/patologia , Feminino , Células HeLa , Humanos , Células MCF-7 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos
10.
Mol Neurobiol ; 52(3): 1093-1105, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25294638

RESUMO

Withania somnifera (WS), popularly known as "Ashwagandha" has been used for centuries as a nerve tonic. Its protective effect has been elucidated in many neurodegenerative pathologies, although there is a paucity of data regarding its effects in ischemic stroke. We examined the neuroprotective properties of an aqueous extract of WS in both pre- and poststroke treatment regimens in a mouse model of permanent distal middle cerebral artery occlusion (pMCAO). WS (200 mg/kg) improved functional recovery and significantly reduced the infarct volume in mice, when compared to those treated with vehicle, in both paradigms. We investigated the protective mechanism/s induced by WS using brain cortices by testing its ability to modulate the expression of key proteins in the ischemic-apoptotic cascade. The Western blots and immunofluorescence analyses of mice cortices revealed that WS upregulated the expression of hemeoxygenase 1 (HO1) and attenuated the expression of the proapoptotic protein poly (ADP-ribose) polymerase-1 (PARP1) via the PARP1-AIF pathway, thus preventing the nuclear translocation of apoptosis-inducing factor (AIF), and subsequent apoptosis. Semaphorin-3A (Sema3A) expression was reduced in WS-treated group, whereas Wnt, pGSK3ß, and pCRMP2 expression levels were virtually unaltered. These results indicate the interplay of antioxidant-antiapoptic pathways and the possible involvement of angiogenesis in the protective mechanism of WS while emphasizing the noninvolvement of one of the prime pathways of neurogenesis. Our results suggest that WS could be a potential prophylactic as well as a therapeutic agent aiding stroke repair, and that part of its mechanism could be attributed to its antiapoptotic and antioxidant properties.


Assuntos
Fator de Indução de Apoptose/fisiologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Proteínas do Tecido Nervoso/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Fitoterapia , Extratos Vegetais/uso terapêutico , Poli(ADP-Ribose) Polimerases/fisiologia , Withania , Animais , Apoptose/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Indução Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/biossíntese , Glicogênio Sintase Quinase 3 beta , Heme Oxigenase-1/biossíntese , Heme Oxigenase-1/genética , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/patologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/biossíntese , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Plantas Medicinais/química , Poli(ADP-Ribose) Polimerase-1 , Transporte Proteico/efeitos dos fármacos , Ratos , Semaforina-3A/biossíntese , Withania/química
11.
J Pharmacol Sci ; 125(3): 300-11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25048019

RESUMO

Oleuropein could inhibit growth and/or induce apoptosis in several cancer cell lines. In this study, we investigate how oleuropein strongly induces apoptotic cell death in HeLa human cervical carcinoma cells. Oleuropein induced HeLa cells apoptosis as demonstrated by induction of a sub-G(1) peak in flow cytometry and apoptosis-related morphological changes observed by fluorescence microscopy after being stained by Hoechst 33324. The results also showed that 150 - 200 µM oleuropein–treated HeLa cells were arrested at the G(2)/M phase. Western blot analysis revealed that the phosphorylated ATF-2, c-Jun NH(2)-terminal kinase (JNK) protein, p53, p21, Bax, and cytochrome c protein in the cytoplasm significantly increased in a dose-dependent manner after treatment of oleuropein for 24 h. Additionally, increasing levels of Bax in response to JNK/SPAK signaling, which formed mitochondrial membrane channels, accounted for releasing of cytochrome c and activation of caspase-9 and -3. SP600125 (20 µM), a JNK(1/2) inhibitor, markedly suppressed the formation of apoptotic bodies and JNK activation induced by oleuropein at 200 µM. Thus, oleuropein-induced apoptosis was activated by the JNK/SPAK signal pathway. The result shows that oleuropein holds promise as a potential chemotherapeutic agent for the treatment of HeLa cells.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Iridoides/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Antineoplásicos Fitogênicos , Fator de Indução de Apoptose/fisiologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Glucosídeos Iridoides
12.
Br J Pharmacol ; 171(8): 2000-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24684389

RESUMO

Cells die by a variety of mechanisms. Terminally differentiated cells such as neurones die in a variety of disorders, in part, via parthanatos, a process dependent on the activity of poly (ADP-ribose)-polymerase (PARP). Parthanatos does not require the mediation of caspases for its execution, but is clearly mechanistically dependent on the nuclear translocation of the mitochondrial-associated apoptosis-inducing factor (AIF). The nuclear translocation of this otherwise beneficial mitochondrial protein, occasioned by poly (ADP-ribose) (PAR) produced through PARP overactivation, causes large-scale DNA fragmentation and chromatin condensation, leading to cell death. This review describes the multistep course of parthanatos and its dependence on PAR signalling and nuclear AIF translocation. The review also discusses potential targets in the parthanatos cascade as promising avenues for the development of novel, disease-modifying, therapeutic agents.


Assuntos
Fator de Indução de Apoptose/fisiologia , Morte Celular/fisiologia , Mitocôndrias/fisiologia , Terapia de Alvo Molecular/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Poli Adenosina Difosfato Ribose/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Fator de Indução de Apoptose/metabolismo , Sobrevivência Celular/fisiologia , Glicosídeo Hidrolases/fisiologia , Humanos , Modelos Biológicos , Doenças Neurodegenerativas/fisiopatologia , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/metabolismo
13.
Front Biosci (Landmark Ed) ; 19(3): 515-27, 2014 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-24389199

RESUMO

Acute Myeloid Leukemia (AML), a cancer of the myeloid line of blood cells, progresses rapidly and is typically fatal within weeks or months if left untreated. Asparaginases are a class of enzymatic anti-leukemia agents that induce apoptosis in leukemia cell lines; however, the role of L-asparaginase in the induction of apoptosis in AML cells has not been investigated. In this study, we investigated the apoptosis-inducing effect of L-asparaginase and its underlying mechanism in AML U937 cells. The results showed that L-asparaginase significantly inhibited the proliferation of U937 cells by inducing apoptosis. Furthermore, the low baseline expression level of asparaginase synthase (ASNS) demonstrated the sensitivity of U937 cells and AML M5, a rare subtype of AML, to L-asparaginase. Apoptosis induced by L-asparaginase is mediated by apoptosis-inducing factor (AIF). Our findings show the potential of L-asparaginase as an effective approach in treating AML via the induction of apoptosis mediated by AIF.


Assuntos
Antineoplásicos/farmacologia , Fator de Indução de Apoptose/fisiologia , Apoptose/efeitos dos fármacos , Asparaginase/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Sequência de Bases , Primers do DNA , Eletroforese em Gel de Ágar , Citometria de Fluxo , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Reação em Cadeia da Polimerase , Taxa de Sobrevida , Células U937
14.
Surgery ; 154(2): 143-51, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23889944

RESUMO

BACKGROUND: Molecular factors that dictate tumor response to ionizing radiation in rectal cancer are not well described. METHODS: We investigated the contribution of p53, p21, Bax, and DNA-PKcs in response to ionizing radiation in an isogeneic colorectal cancer system in vitro and in vivo. RESULTS: HCT-116 DNA-PKcs(-/-) cells and xenografts were radiosensitive compared with wild-type (WT) HCT-116 cells. HCT-116 p53(-/-) cells and tumor xenografts displayed a radioresistant phenotype. Separately, p21 or Bax deficiency was associated with a radiosensitive phenotype in vitro and in vivo. In vivo, Bax deficiency led to increased tumor necrosis and decreased microvessel density. In vitro, HCT-116 Bax(-/-) cells had decreased levels of vascular endothelial growth factor. HCT-116 WT cells had a more radioresistant phenotype after pancaspase inhibition, but pancaspase inhibition did not alter radiosensitivity in HCT-116 Bax(-/-) cells subjected to ionizing radiation. There was no difference in cell growth in HCT-116 WT cells subjected to transient apoptosis-inducing factor (AIF) inhibition; however, HCT-116 Bax(-/-) cells treated with AIF siRNA followed by ionizing radiation had a significant survival advantage compared with control-treated cells, implicating AIF in the radiosensitivity of Bax(-/-) cells. CONCLUSION: These data might be used along with other markers to predict response to radiation in patients with rectal cancer.


Assuntos
Neoplasias Colorretais/radioterapia , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Proteína Quinase Ativada por DNA/fisiologia , Tolerância a Radiação , Proteína Supressora de Tumor p53/fisiologia , Proteína X Associada a bcl-2/fisiologia , Animais , Fator de Indução de Apoptose/fisiologia , Células HCT116 , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Cereb Blood Flow Metab ; 33(8): 1207-14, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23632967

RESUMO

Cyclooxygenase-2-derived prostaglandin E2 (PGE2) contributes to excitotoxic and ischemic neuronal cell death by engaging neuronal PGE2 type 1 receptors (EP1R). Our previous studies have shown that EP1R signaling resulted in disturbances of intracellular Ca(2+) homeostasis and suppression of the pro-survival protein kinase AKT. The aim of this study was to investigate whether these pathophysiological mechanism have a role in the neuronal cell death after transient forebrain ischemia. Mice were subjected to ischemia/reperfusion by bilateral common carotid artery occlusion. Hippocampal cornu ammonis area 1 (CA1) neuronal cell death was determined 5 days after reperfusion. Animals treated with the EP1R antagonist SC51089 or EP1R-deficient mice (EP1(-/-)) showed significantly less neuronal injury as compared to vehicle-treated wild-type controls. Benefits of EP1R blockage were still evident 14 days after injury. Better neuronal survival was correlated with reduced neuronal caspase-3 activity and decreased nuclear translocation of the apoptosis-inducing factor . Neuroprotection could be reverted by intracerebroventricular administration of the phosphoinositide 3-kinase inhibitor LY294002 and was not further increased by the calcineurin inhibitor FK506. These data implicate EP1R in postischemic neuronal apoptosis possibly by facilitating AKT inhibition.


Assuntos
Apoptose/fisiologia , Ataque Isquêmico Transitório/patologia , Neurônios/fisiologia , Receptores de Prostaglandina E Subtipo EP1/fisiologia , Animais , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/fisiologia , Western Blotting , Região CA1 Hipocampal/patologia , Calcineurina/metabolismo , Inibidores de Calcineurina , Caspase 3/metabolismo , Dinoprostona/metabolismo , Hidrazinas/farmacologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica v-akt/metabolismo , Oxazepinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Transporte Proteico , Receptores de Prostaglandina E Subtipo EP1/antagonistas & inibidores
16.
Acta Biochim Biophys Sin (Shanghai) ; 45(5): 383-90, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23619569

RESUMO

The Homo sapiens charged multivesicular body protein 5 (CHMP5) is a member of the multivesicular body, which serves as an anti-apoptotic protein and is thought to participate in leukemogenesis. In this study, a short-hairpin RNA-based RNA interference approach was used to inhibit the expression of CHMP5 in the leukemic cell line U937. After CHMP5 was inhibited, antibody microarray and western blot analysis were used to study the changes in the programmed cell death (PCD) pathway. PCD can be classified into three types: apoptosis, necrosis, and autophagy. Results showed that caspase 3 was activated in CHMP5-deficient U937 cells, indicating that the apoptotic pathway was activated, although neither the intrinsic nor the extrinsic apoptotic pathways were activated. Our results also showed that the Granzyme B/Perforin apoptotic pathway was activated by CHMP5 silencing. Necrosis is activated by caspase-independent executioners. In this study, we showed that the apoptosis-inducing protein-mediated necrotic PCD pathway is activated after CHMP5 inhibition. It was found that autophagic PCD did not occur in CHMP5-deficient U937 cells. In conclusion, after CHMP5 inhibition, both Granzyme B/Perforin apoptotic pathway and apoptosis-inducing factor-mediated necrotic pathway were activated, while autophagic pathway was not activated.


Assuntos
Apoptose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Fator de Indução de Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Caspase 3/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Ativação Enzimática , Técnicas de Silenciamento de Genes , Granzimas/metabolismo , Humanos , Necrose , Perforina/metabolismo , Interferência de RNA , Células U937
17.
Apoptosis ; 18(1): 9-27, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23192364

RESUMO

Oxidative stress is implicated in hyperglycemia-induced alterations in cell signaling pathways. We examined the toxicity of high glucose in primary rat hepatocytes and its amelioration by naringenin. Incubation of hepatocytes with 40 mM glucose for 1.5 h exhibited significant decrease in cell viability confirmed by MTT reduction and Alamar blue assay. At the same time primary rat hepatocytes exhibited significant decrease in mitochondrial membrane potential indicating organelle dysfunction. Enhanced translocation of Cyt-c from mitochondria to cytosol and AIF/Endo-G from mitochondria to nucleus, activation of caspase-9/3, DNA damage, and chromatin condensation were observed in glucose-stressed hepatocytes, indicating the involvement of mitochondrial pathway in high glucose-induced apoptosis. Transcript levels of antioxidant enzymes were significantly altered along with corresponding changes in their enzymatic activities. The level of intracellular antioxidant glutathione as well as superoxide dismutase, catalase, and glutathione peroxidase activities were observed to be significantly decreased in hepatocytes treated with high concentration of glucose. Naringenin, a flavanone, was effective in preventing loss of cell viability, reactive oxygen species generation, and decline in antioxidant defense. Translocation of AIF, Endo-G, and Cyt-c from mitochondria was also inhibited by naringenin in glucose-stressed cells. Messenger RNA expression of anti-apoptotic and apoptotic genes, externalization of phosphatidyl serine, DNA damage, chromatin condensation, and sub-diploid cell population were effectively altered by naringenin indicating its anti-apoptotic potential in vitro. Our data suggests that naringenin can prevent apoptosis induced by high glucose through scavenging of reactive oxygen species and modulation of mitochondria-mediated apoptotic pathway.


Assuntos
Fator de Indução de Apoptose/fisiologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Endodesoxirribonucleases/fisiologia , Flavanonas/farmacologia , Glucose/toxicidade , Hepatócitos/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Citocromos c/metabolismo , Ativação Enzimática/efeitos dos fármacos , Glucose/farmacologia , Hepatócitos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar
18.
Biocell ; 36(3): 121-126, Dec. 2012. ilus, graf
Artigo em Inglês | LILACS | ID: lil-694712

RESUMO

Recent findings suggest that apoptotic protein apoptosis-inducing factor (AIF) may also play an important non-apoptotic function inside mitochondria. AIF was proposed to be an important component of respiratory chain complex I that is the major producer of superoxide radical. The possible role of AIF is still controversial. Superoxide production could be used as a valuable measure of complex I function, because the majority of superoxide is produced there. Therefore, we employed superoxide-specific mitochondrial fluorescence dye for detection of superoxide production. We studied an impact of AIF knockdown on function of mitochondrial complex I by analyzing superoxide production in selected cell lines. Our results show that tumoral telomerase-positive (TP) AIF knockdown cell lines display significant increase in superoxide production in comparison to control cells, while a non-tumoral cell line and tumoral telomerase-negative cell lines with alternative lengthening of telomeres (ALT) show a decrease in superoxide production. According to these results, we can conclude that AIF knockdown disrupts function of complex I and therefore increases the superoxide production in mitochondria. The distinct effect of AIF depletion in various cell lines could result from recently discovered activity of telomerase in mitochondria of TP cancer cells, but this hypothesis needs further investigation.


Assuntos
Humanos , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/fisiologia , Complexo I de Transporte de Elétrons/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Corantes Fluorescentes/farmacologia , Inativação Gênica , Células HeLa , Processamento de Imagem Assistida por Computador , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fenantridinas/farmacologia , Superóxidos/metabolismo , Telomerase/metabolismo , Telômero/ultraestrutura
19.
Biocell ; 36(3): 121-126, Dec. 2012. ilus, graf
Artigo em Inglês | BINACIS | ID: bin-128454

RESUMO

Recent findings suggest that apoptotic protein apoptosis-inducing factor (AIF) may also play an important non-apoptotic function inside mitochondria. AIF was proposed to be an important component of respiratory chain complex I that is the major producer of superoxide radical. The possible role of AIF is still controversial. Superoxide production could be used as a valuable measure of complex I function, because the majority of superoxide is produced there. Therefore, we employed superoxide-specific mitochondrial fluorescence dye for detection of superoxide production. We studied an impact of AIF knockdown on function of mitochondrial complex I by analyzing superoxide production in selected cell lines. Our results show that tumoral telomerase-positive (TP) AIF knockdown cell lines display significant increase in superoxide production in comparison to control cells, while a non-tumoral cell line and tumoral telomerase-negative cell lines with alternative lengthening of telomeres (ALT) show a decrease in superoxide production. According to these results, we can conclude that AIF knockdown disrupts function of complex I and therefore increases the superoxide production in mitochondria. The distinct effect of AIF depletion in various cell lines could result from recently discovered activity of telomerase in mitochondria of TP cancer cells, but this hypothesis needs further investigation.(AU)


Assuntos
Humanos , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/fisiologia , Complexo I de Transporte de Elétrons/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Corantes Fluorescentes/farmacologia , Inativação Gênica , Células HeLa , Processamento de Imagem Assistida por Computador , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fenantridinas/farmacologia , Superóxidos/metabolismo , Telomerase/metabolismo , Telômero/ultraestrutura
20.
J Exp Med ; 209(9): 1641-53, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22869892

RESUMO

Apoptosis-inducing factor (Aif) is a mitochondrial flavoprotein that regulates cell metabolism and survival in many tissues. We report that aif-hypomorphic harlequin (Hq) mice show thymic hypocellularity and a cell-autonomous thymocyte developmental block associated with apoptosis at the ß-selection stage, independent of T cell receptor ß recombination. No abnormalities are observed in the B cell lineage. Transgenes encoding wild-type or DNA-binding-deficient mutant Aif rectify the thymic defect, but a transgene encoding oxidoreductase activity-deficient mutant Aif does not. The Hq thymic block is reversed in vivo by antioxidant treatment, and Hq T but not B lineage cells show enhanced oxidative stress. Thus, Aif, a ubiquitous protein, serves a lineage-specific nonredundant antiapoptotic role in the T cell lineage by regulating reactive oxygen species during thymic ß-selection.


Assuntos
Fator de Indução de Apoptose/fisiologia , Linfócitos T/fisiologia , Animais , Apoptose , Morte Celular , Linhagem da Célula , DNA/metabolismo , Feminino , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Masculino , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Recombinação Genética , Timócitos/metabolismo , Timócitos/patologia , Timo/crescimento & desenvolvimento , Timo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...